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Extensive restricted canonical ensemble Monte Carlo simulations �D. S. Corti and P. Debenedetti, Chem.
Eng. Sci. 49, 2717 �1994�� for the supersaturated Lennard—Jones �LJ� vapor were performed. These simula-
tions were conducted at different densities and reduced temperatures from 0.7 to 1.0 and the radial density
distribution functions were obtained, most of which are unavailable via integral equation theory due to phase
separations. Among different constraints imposed on the system studied, the one with the local minimum of the
excess free energy was taken to be the one that approximates the equilibrium state of the metastable LJ vapor.
For the slightly saturated state points, where integral equation theory does have a solution, compared with our
simulations, differences of the radial density distribution functions were found and they are attributed to
ignoring density fluctuations in the integral equation theory.

DOI: 10.1103/PhysRevE.78.012101 PACS number�s�: 64.60.My, 61.20.Ja

I. INTRODUCTION

The thermal properties of the supersaturated vapor are
interesting and important because of their scientific and en-
gineering applications. Numerous research works have con-
tributed to this field with their special interests �1–19�. For
example, some focus on the free-energy barrier of the
nucleus, the critical size of the liquidlike drop, or homoge-
neous condensation of the supersaturated vapor �1–13�; other
studies deal with the thermal properties of the supersaturated
vapor itself �14–18�; and others discuss the failure of the
integral equation with various approximations when applied
to a metastable system �19,20�.

Without a doubt, the integral equation theory provides a
method of relatively low computational cost to investigate
the thermal properties of both simple and complex fluids.
The radial density distribution function g�r� can be easily
obtained and numerous thermal properties can be obtained
from g�r�, for example the internal energy, pressure or even
chemical potential, and so on. Although great successes have
been achieved, when applied to the metastable fluid, the in-
tegral equation method has been found to have some unsolv-
able regions for certain densities and temperatures �19–22�.
The unsolvability of the integral equation was found to result
from the presence of square root branch points that signal the
onset of complex solutions �23�. Efforts have been made to
seek the solution inside the unsolvable region, for example
those listed in Refs. �20,23�, and many solutions were found
�22�. Therefore, so far, except for very slightly saturated
cases, most of the state points inside the spinodal cannot be
solved with the integral equation.

Corti and Debenedetti �16� emphasized that the difference
of equilibrium between the normal state and the metastable
state lies in the number of configurations appearing in the
two kinds of systems. For a normal state, the probability of
the appearance of a state is governed by the Boltzmann fac-

tor, and the higher the system energy is, the lower is the
probability that it will appear. However, in the metastable
system, there exists an energy barrier. Once the system over-
comes the barrier, the system goes to phase separation.
Therefore, the central task for the simulation is to prevent the
system from going to phase separation.

Recalling the derivation of the integral equation �24,25�,
the integral equation is derived from the Mayer cluster ex-
pansion �26�, and the various approximate closure relation-
ships were obtained by manipulating or ignoring some diag-
ams in the expansion. Thus all integrations in the partition
function are performed without considering the density fluc-
tuation of the atoms or molecules in configuration space,
which appeared to be vital when dealing with the metastable
fluid �16–18�. Also, as explicitly pointed out in Ref. �27�, in
order to obtain the thermal properties of the metastable fluid,
a constraint potential must be added to the partition function,
which apparently alters the partition function. Linhart et al.
�17� developed a molecular-dynamics �MD� simulation
method to study the thermal properties of the supersaturated
vapor up to spinodal density at different temperatures. They
averaged the thermal properties before the system goes to
phase separation and used the instantaneous pressure, the
numbers of atoms in the largest cluster, and the number of
atoms not belonging to any cluster to indicate phase separa-
tion. Recently, we reported the pressure, excess chemical po-
tential, and excess free energy, with respect to ideal-gas data
at different densities of the supersaturated Lennard-Jones
�LJ� vapor at the reduced temperature 0.7 by use of the re-
stricted canonical ensemble Monte Carlo simulation method
�18�. At each density studied, we imposed different con-
straints on the system and found for those densities below
the spinodal density that the system would exhibit a free-
energy local minimum, which is close to the equilibrium
state of the metastable system. While the integral equation
theory includes the integration of the phase-separated con-
figurations, the radial density distributions obtained from
such a theory will not be accurate, thus leading to the incor-
rect thermal properties of the metastable system. In this pa-*niechu@hotmail.com
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per, we will demonstrate these assertions by comparison with
our simulation results.

II. METHODS AND SIMULATIONS

Here, we recapitulate the methodology we used previ-
ously �18�. In this work, the vapor is modeled by simulations
with Lennard-Jones model interactions for atoms,

u�r� = 4����

r
�12

− ��

r
�6� . �2.1�

First, divide the system into subcells based on the number
of atoms and the density of the system studied. The length of
the cubic subcell is taken with the following relations:

l =
L

N�1/3� , �2.2�

where L is the length of an edge of the simulation box and N
is the total number of particles during simulation. Therefore,
the ideal homogeneous case should correspond to one atom
per cell. However, density fluctuations exist, and limiting the
maximum number, i, of atoms in each subcell di may help to
maintain the one phase state for the system studied. For a
given density, a series run starts from dmax, when no number
limitation is imposed onto the subcell, to d2, when only two
atoms in one subcell are allowed; otherwise, the trial move-
ment of a selected atom will be rejected. For each run, the
excess chemical potential and pressure are averaged and re-
corded. With the obtained excess chemical potential and
pressure, the excess free energy can be computed with the
following formula:

fex = �ex − Pex/� , �2.3�

where fex is the excess free energy per particle, �ex is the
excess chemical potential, and Pex is the excess pressure of
the system with respect to the ideal case, �id. In this work,
initially, all the atoms were placed on a simple cubic lattice.
For all simulations, the system size was set at least to 40�.
The number of steps to reach equilibrium is 10�106 moves,
and another 200�106 moves were used to sample the phase
space. The cutoff distance is set to be 8.0�, and beyond the
cutoff distance, standard long-range corrections were em-
ployed. The simulations are carried out at T*=0.7, 0.75, 0.8,
0.9, and 1.0, where T*=kT /�. For T*=0.7, 0.75, and 0.8, the
number of particles involved in the simulation is 3375, and
for T*=0.9 and 1.0, the number of particles involved in the
simulation is 5832 and 6859, respectively. The excess chemi-
cal potential is measured by performing the brute force sam-
pling of exp�−�u�, where it is the energy increase brought by
the insertion of a test atom. To see the original idea of the
atom insertion method, the reader should refer to Ref. �28�,
and our program is made based on the classical textbooks on
molecular simulation �29,30�. For the integral equation,

��r� = h�r� − c�r� =	 �h�r��c�r − r��dr�, �2.4�

where h�r� is the total correlation function, c�r� is the direct
correlation function, and ��r� is the indirect correlation func-

tion. The Percus-Yevick �PY� closure is used,

h�r� = exp�− �u�r���1 + ��r�� − 1. �2.5�

Throughout our calculation, we set the grid spacing to be
0.005� and the total number of the grid points is 4096. The
method of solution of the integral equation follows that pre-
sented in Ref. �31�.

III. RESULT AND DISCUSSION

First, we show an example of how to identify the approxi-
mated equilibrium state of the metastable fluid by locating
the local minimum of free energy. Table I gives simulation
results at three densities for the excess free energy per par-
ticle and constraints imposed on the supersaturated vapor
system at T*=0.7. These three examples correspond to the
lightly saturated cases under the temperature studied. It is
clearly seen in the table that for each column, the excess free
energy per particle first increases, then decreases to a mini-
mum value, then increases a bit, and finally decreases. Thus
the local minimum free energy is clearly seen and located.
For the last row �dmax=inf� in the table, the free-energy val-
ues are much higher than the upper ones, which indicates
that the simulations were performed under the circumstances
of phase separations.

Second, we show two examples that even for the slightly
saturated cases at different temperatures, the pressures pre-
dicted by the integral equation theory exhibit a systematic
difference compared with the result obtained by the current
simulation method. Figures 1 and 2 give the result of the
radial density distributions for ��3=0.06 at T*=0.9 and
��3=0.08 at T*=1.0, respectively, where the integral equa-
tion method does have solutions. It is clearly seen that for the
two cases studied, the first peak of the radial density distri-
bution functions from the integral equation method are
broader and higher than those obtained from the simulation
method. Since it does not take the density fluctuations of the
atoms into account, this indicates that for the integral equa-
tion method, the partition functions it manipulates involve

TABLE I. Simulation results for the excess free energy �in the
table, f�=�ex− �Pid+ Pex� /� is listed� and constraints imposed on
the system of supersaturated vapor. The cutoff distance was rc

=8.0� and the system size was N=3375.

dmax /��3 0.03 0.035 0.04

2 −0.9923 −1.0426 −1.0926

3 −1.0428 −1.1006 −1.1578

4 −1.0717 −1.1336 −1.1967

5 −1.0867 −1.1558 −1.2267

6 −1.0970 −1.1716 −1.2641

7 −1.1085 −1.1714 −1.2531

8 −1.0939 −1.2013 −1.2584

9 −1.0976 −1.1968 −1.3668

10 −1.1038 −1.2175 −1.3785

� −1.9477 −2.0068 −2.3899
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contributions from the phase-separated configurations. While
not overwhelming as for the highly saturated cases, these
contributions help to broaden and enlarge the first peak of the
radial density distribution functions. It is the small part of the
liquid phase, including in the integral equation theory, that
contributes the higher first peak in both Figs. 1 and 2. For the
simulation method applied in this work, the phase separation
is effectively prevented by dividing the system studied into
subcells and limiting the maximum number of atoms appear-
ing in each subcell, which yields a lower and narrower first
peak.

Third, we will answer the question of what the “real”
density distribution function looks like, for those state points
that cannot be solved with the integral equation, with our
simulation result. We must emphasize that all the radial den-
sity distributions are obtained under the condition that no
phase separation takes place. Figures 3–6 plot the radial den-
sity distributions obtained from the current simulation
method at various densities under different temperatures. In
each plot, there is a one unit shift upward of the functions in
order to make the plot clear. The densities we used in our
simulation vary from slightly saturated to highly saturated,
even for some densities near the spinodal density �17�. For

each temperature, as the density of the system changes from
slightly saturated to highly saturated, the structure of the ra-
dial density distribution function changes in an interesting
way. The second peak of the radial density distribution func-
tion first appears, then develops, and finally tends to disap-
pear. The trend is clearly shown in Figs. 4–6; for Fig. 3,
where T*=0.7, the second peak first disappears and then de-
velops again. So far it is not very clear what causes the
abnormality, and we suspect at low temperature that the
mechanism of cluster formation is different from those of
high temperature and the phenomenon remains to be ex-
plored in the future. This trend is reasonable because as the
density approaches the spinodal density, the free-energy bar-
rier to form condensation nuclei goes to zero and even a
small density fluctuation can cause homogeneous condensa-
tion. Thus, the structure of the system must become more
“simple” in order to maintain the one phase state. With all
the radial density distribution functions obtained, we do not
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FIG. 1. Radial density distribution functions obtained from the
simulation method for ��3=0.06 at T*=0.9.
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FIG. 2. Radial density distribution functions obtained from the
simulation method for ��3=0.08 at T*=1.0.
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FIG. 3. Radial density distribution functions obtained from the
simulation method for ��3=0.03, 0.035, 0.04, 0.045, and 0.05 at
T*=0.75 and a one unit shift upward is added to the functions in
order to make the plot clear.
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FIG. 4. Radial density distribution functions obtained from the
simulation method for ��3=0.03, 0.035, 0.04, 0.045, 0.05, and
0.055 at T*=0.8 and a one unit shift upward is added to the func-
tions in order to make the plot clear.
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find obvious long-range density fluctuations; here we mean
“no obvious” instead of “none” at all. Our findings seem
contradictory to some predictions that there should exist ob-
vious long-range density fluctuations as the density ap-
proaches the spinodal density �19,20�.

IV. SUMMARY

In this work, we extend our simulation of radial density
distribution functions of the supersaturated LJ vapor from
T*=0.7 to 1.0. Our method provides an effective way to
identify the configurations that belong to the phase separa-

tion or close to the equilibrium of the metastable state and to
compute the radial density distribution function at this inter-
esting material state. From the current simulation result, we
find that the widely used integral equation theory cannot ac-
curately predict the thermal properties of metastable systems
because the partition function used in that theory does not
take into account the density fluctuation of the atoms or mol-
ecules. Also, our results indicate that no obvious long-range
density fluctuation exists for the real metastable system when
the density of the system approaches the spinodal density. In
all, we hope that the current work may shed some light on
the improvement of the integral equation theory to model the
thermal properties of the metastable system.
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FIG. 5. Radial density distribution functions obtained from the
simulation method for ��3=0.03, 0.04, 0.05, 0.06, 0.07, 0.08, and
0.085 at T*=0.9 and a one unit shift upward is added to the func-
tions in order to make the plot clear.
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FIG. 6. Radial density distribution functions obtained from both
simulation methods for ��3=0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and
0.1 at T*=1.0 and a one unit shift upward is added to the functions
in order to make the plot clear.
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